Correlation coefficient:
r=SSxy√SSxx·SSyyLeast squares regression equation (equation of the least squares regression line):
ˆy=ˆβ1x+ˆβ0 where ˆβ1=SSxySSxx and ˆβ0=ˉy−ˆβ1ˉxSum of the squared errors for the least squares regression line:
SSE=SSyy−ˆβ1SSxy.Sample standard deviation of errors:
sε=√SSEn−2100(1−α)% confidence interval for β1:
ˆβ1±tα∕2 sε√SSxx (df=n−2)Standardized test statistic for hypothesis tests concerning β1:
T=ˆβ1−B0sε∕√SSxx (df=n−2)Coefficient of determination:
r2=SSyy−SSESSyy=SS2xySSxxSSyy=ˆβ1SSxySSyy100(1−α)% confidence interval for the mean value of y at x=xp:
ˆyp±tα∕2 sε √1n+(xp−ˉx)2SSxx (df=n−2)100(1−α)% prediction interval for an individual new value of y at x=xp:
ˆyp±tα∕2 sε √1+1n+(xp−ˉx)2SSxx (df=n−2)